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ABSTRACT 

Induced seismicity remains a critical challenge in the sustainable development of geothermal energy, with fluid injection and reservoir 

stimulation often triggering seismic events. This study proposes a data-driven framework using a modified Temporal Fusion Transformer 

to forecast induced seismicity rates in geothermal fields. The model integrates heterogeneous data, including geological features, historical 

seismicity, and operational metadata, to predict seismicity across multiple temporal horizons. By leveraging attention mechanisms and 

probabilistic forecasting, our approach identifies key drivers of seismicity, such as injection rate variability, while providing uncertainty 

bounds for informed decision-making. The framework's interpretability enables scenario testing to evaluate the impacts of operational 

adjustments, such as changes in injection rates, on seismic hazards. Results from a case study at the Geysers geothermal field demonstrate 

the model’s ability to accurately capture nonlinear relationships between fluid injection and seismicity, offering insights into subsurface 

processes and informing risk mitigation strategies. This work advances seismicity forecasting by bridging the gap between statistical and 

physics-based methods, contributing to safer and more efficient geothermal energy production. 

1. INTRODUCTION 

Induced seismicity presents a critical challenge in geothermal reservoir management in the context of sustainable development of 

geothermal energy, a renewable resource that plays a pivotal role in achieving global carbon neutrality goals (Gaucher et al., 2015). The 

occurrence of large seismic events poses public safety concerns and can provoke societal and economic repercussions, necessitating the 

development of robust mitigation plans by operators. These concerns have garnered significant scientific and public attention as 

geothermal systems grow in importance, particularly through the deployment of Enhanced Geothermal Systems (EGS; Tester et al., 2006; 

Ziagos et al., 2013) designed to extract energy from low-permeability reservoirs. Seismic events triggered by fluid injection, extraction, 

or circulation are not limited to geothermal operations but also extend to other fluid-driven perturbations, such as reservoir impoundment, 

oil and gas production, and underground disposal of waste fluids. These activities have led to the suspension or abandonment of projects, 

underscoring the urgent need for robust and reliable seismicity forecasting frameworks (Baisch et al., 2009; Bertani, 2012). 

Many efforts have been made in the last decade to understand and forecast induced seismicity, using statistical, physics-based, or hybrid 

methods that rely on assumptions or prior geological knowledge of seismicity mechanisms. Statistical approaches, such as the epidemic-

type aftershock sequence (ETAS) model (Ogata 1988 and 1998), and Traffic-light system (Bommer et al., 2006) have been widely used 

to model seismicity as a stochastic point process in time, space, and magnitude domains. These models effectively capture background 

seismicity driven by tectonic loading and aftershock triggering (Bachmann et al., 2011), using well-established seismological laws such 

as the Omori-Utsu formula and the Gutenberg-Richter distribution. However, applying these models to induced seismicity requires 

modifications to account for anthropogenic factors like fluid injection. Recent studies have addressed these challenges by integrating 

linear response theory into statistical seismicity models, treating fluid injection as an external forcing function. The seismicity rate is 

modeled as a convolution of the injection rate with a kernel function that encapsulates the transient response of the subsurface (Kim and 

Avouac, 2023). Despite these advancements, such frameworks often focus primarily on temporal evolution, neglecting the stochastic 

nature and complex interactions of seismicity-driving factors, which limits their predictive power in seismicity forecasting. 

On the other hand, physics-based models simulate the dynamic changes in stress and strain caused by geothermal operations, offering 

deeper insights into the underlying physical processes. While these models provide valuable understanding to induced seismicity, they 

are computationally intensive and rely on detailed subsurface property knowledge, which is often heterogeneous and poorly constrained. 

Moreover, these methods struggle to accommodate the inherently stochastic and nonlinear nature of earthquake triggering, particularly in 

highly active geothermal regions. Hybrid approaches that combine observational data with physical modeling have been proposed to 

improve predictive accuracy and reliability. However, they remain limited in identifying the relative importance of contributing factors, 

offering minimal insights into the mechanisms that trigger seismic events and their dynamic evolution. 

In this study, we adopt a data-driven deep learning framework to forecast induced seismicity rates in geothermal fields. Building on a 

modified Temporal Fusion Transformer (TFT; Lim et al., 2021) architecture, this approach integrates all available geological and 

operational parameters, including historical seismicity and operational metadata, to predict future rates of induced seismicity. Although 

our approach can also be classified as a statistical method, it distinguishes itself through its capability for multi-horizon forecasting, 

addressing the challenges of predicting variables across multiple future time steps. Multi-horizon forecasting allows for a comprehensive 

understanding of the evolution of target variables, enabling users to make informed decisions at multiple stages in the future. The model’s 
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built-in attention mechanism identifies key contributing factors, enabling interpretable insights into induced seismicity without requiring 

prior assumptions about the importance of input features.  

The model processes static covariates (e.g., borehole sites), time-dependent past observations (e.g., historical seismicity and injection 

rates), and known future inputs (e.g., planned injection schedules). Outputs include probabilistic predictions across multiple quantiles, 

providing estimations of uncertainty under various operational scenarios. This interpretable framework not only demonstrates superior 

predictive performance but also enhances understanding of the mechanisms underlying induced seismicity. It serves as a robust tool for 

risk mitigation and improved reservoir management strategies in geothermal operations. By addressing the limitations of traditional 

methods, our approach contributes to the sustainable development of geothermal energy while ensuring public safety and minimizing 

economic disruptions. 

2. METHODOLOGY 

The proposed approach leverages a transformer network to integrate heterogeneous time series, dynamically select relevant features, and 

capture complex temporal dependencies, enabling accurate and interpretable forecasting of induced seismicity. 

2.1 Temporal Transformer Framework 

The Temporal Fusion Transformer (TFT) represents a state-of-the-art architecture for multi-horizon time series forecasting, designed to 

integrate heterogeneous data and capture complex temporal dynamics. In this study, we extend the TFT framework to forecast induced 

seismicity, aligning its design with the characteristics of seismicity and operational metadata to achieve high accuracy and interpretable 

insights. Our approach processes three input types: static covariates (e.g., geological features and well sites), time-dependent past 

observations (e.g., historical seismicity, earthquake magnitudes, injection rates), and known future inputs (e.g., planned injection schedules 

and operational trends). These inputs are unified through embeddings for categorical and contextual information and linear transformations 

for continuous variables. As shown in Figure 1, key components of TFT include static covariate encoder, variable Selection Networks, 

sequence-to-sequence LSTM, and self-attention decoder. These elements collectively enable robust and interpretable seismicity 

forecasting. 

 

 

Figure 1: Overview of the Temporal Fusion Transformer (TFT) architecture for induced seismicity forecasting. The architecture 

effectively captures complex temporal dynamics, providing interpretable insights into the primary drivers of seismicity. 

 

2.2 Static Covariance Encoder and Gating Mechanism 

The model employs a Gated Residual Network (GRN) to encode static covariates that influence temporal dynamics across the network, 

enabling downstream components to leverage contextual information. The static covariates are further reintroduced at multiple stages 

through a static enrichment layer, ensuring that predictions remain consistent with geological knowledge and prior constraints. The GRN 

employs gating mechanisms to achieve dynamic feature selection, enabling the efficient processing of heterogeneous data with varying 

levels of complexity. The GRN is formulated as:   
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where a and c are the primary input and the optional context vector, respectively. 𝜔 denotes weight sharing. The Exponential Linear Unit 

(ELU) activation behaves linearly for positive inputs and saturates for negative inputs, allowing the GRN to adapt its complexity 

dynamically. To control the non-linear contribution, we employ Gated Linear Units (GLUs) as gating mechanisms: 

 

where 𝜎(⋅) is the sigmoid activation, 𝑊(⋅) and 𝑏(⋅) are trainable weights and biases, and ⊙ represents element-wise multiplication. 

GLUs suppress non-essential layers by producing outputs close to zero. Dropout is applied before the gating layer to enhance 

generalization. 

2.3 Variable Selection Network for Temporal Inputs 

Time-varying past and known future inputs are processed through separate variable selection networks that dynamically assign weights 

to features at each time step, filtering out irrelevant or noisy inputs. Let 𝜉𝑡
𝑗
∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙 denote the transformed input of the j-th variable at 

time t, and 𝑋𝑡 = [(𝜉𝑡
1)𝑇 , … , (𝜉𝑡

𝑚𝑥)
𝑇
]
𝑇
 the concatenated vector of all past inputs. Variable selection weights are computed by passing 𝑋𝑡and 

an optional context vector 𝑐𝑠 from static covariate encoder through GRN followed by a Softmax layer: 

 

where 𝑣𝜒
𝑡 ∈ 𝑅𝑚𝑥 contains the selection weights for all 𝑚𝜒 variables at time t. For static variables, the context vector 𝑐𝑠 is omitted. Each 

input 𝜉𝑡
𝑗
 is further refined using the corresponding GRN, in which weights of 𝐺𝑅𝑁

𝜉̃

𝑗
 are shared across all time steps. The final weighted 

representation of past inputs is obtained by combining the refined features: 

 

where 𝑣𝜒
𝑡,𝑗

 is the j-th element of 𝑣𝜒
𝑡 . 

2.4 Sequence-to-Sequence LSTM 

To capture the temporal dependencies for seismicity forecasting, TFT employs a hybrid approach combining sequence-to-sequence LSTM 

layers and interpretable multi-head attention mechanisms. The sequence-to-sequence LSTM layers process past observations and known 

future inputs separately, learning localized temporal patterns and initializing hidden states derived from static covariates. This design 

ensures that geological features and long-term operational trends are embedded into the temporal dynamics. 

2.5 Interpretable Multi-Head Self-attention 

The interpretable multi-head self-attention decoder further enhances the model’s ability to identify long-term patterns and trends by 

highlighting significant time steps and feature interactions. This decoder builds upon multi-head attention in transformer-based 

architectures. In the standard attention mechanism, weighted representations of input values V ∈ RN×dv are computed as: 

 

where A(Q, K)is typically the scaled dot-product attention. Multi-head attention extends this by projecting queries, keys, and values into 

multiple subspaces, enabling the model to learn diverse temporal patterns. To improve interpretability, we modify multi-head attention to 

share values V across all heads and aggregate outputs additively: 

 

where the unified attention weights are given by: 
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This approach allows each head to learn distinct temporal patterns while attending to a common set of input features V. The shared 

weights  Ã(Q, K)$ provide a unified representation that enhances the analysis of significant temporal dependencies and feature interactions. 

This mechanism enables the identification of critical triggers of induced seismicity, such as abrupt increases in injection rates or changes 

in hydrothermal pressure. 

2.6 Uncertainty Modeling and Quantile Foresting 

To model the uncertainty in seismicity rate forecasting, the network outputs probabilistic predictions by generating multiple quantile 

forecasts for each time step. This enables robust decision-making by providing a range of plausible induced seismicity under varying 

operational scenarios. The model’s interpretability is further enhanced through its ability to analyze variable importance. For example, 

the model highlights the dominant role of injection rate variability in driving seismicity, offering insights into how operational adjustments 

can mitigate seismic risks. 

The Temporal Fusion Transformer (TFT) is trained by jointly minimizing the quantile loss, aggregated across all quantile outputs: 

 

where 

 

and (x)+ = max⁡(0, x). In this formulation, Ω represents the training data domain containing N samples, θ denotes the learnable weights 

of TFT, and Q is the set of output quantiles (we use Q = {0.1, 0.5, 0.9} in our experiments). The loss is computed over the forecasting 

horizon τmax. For out-of-sample testing, we evaluate the normalized quantile losses across the entire forecasting horizon, focusing on P50 

and P90 risk metrics: 

 

where  Ω̃ represents the test data domain. 

3. APPLICATION 

This study focuses on induced seismicity in the northwestern region of the Geysers geothermal field, leveraging high-resolution seismic 

and injection data from two key wells, Prati-9 and Prati-29 (Figure 2a). The Geysers, the world’s largest geothermal field, has been 

operational since the 1960s and generates approximately 850 MW of electricity annually through steam production driven by extensive 

water injection. Over 70 injection wells, reaching depths of up to 5 km, are employed to enhance steam production and mitigate reservoir 

pressure depletion. The vapor-dominated reservoir consists of fractured, hydrothermally altered greywacke sandstone with low porosity 

and temperatures exceeding 350ºC below 2.75 km in the northwestern part of the field.  

Fluid injection at the Geysers is gravity-driven, resulting in a negative gauge pressure at the wellhead, in contrast to the high-pressure 

methods typically used for reservoir stimulation. Induced seismicity in the region is primarily linked to water injection rather than steam 

production and is attributed to thermal stresses caused by subsurface rock expansion and contraction. The Geysers provides a unique 

environment for advancing methods to model the interplay between subsurface forcing and seismic responses, with important implications 

for geothermal energy development and seismic hazard mitigation. 

3.1 Earthquake Catalog and Injection Data 

The earthquake catalog spans from 2009 to 2015 and includes 1254 seismic events near Prati-9 and Prati-29 (Figure 2b).  These events 

are recorded by the Berkeley-Geysers (BG) seismic network, consisting of 31 three-component short-period geophones operated by 

Lawrence Berkeley National Laboratory. Events are relocated using the double-difference relocation technique, improving hypocenter 

precision to 50 m. Only events with magnitudes larger than 0 are considered to ensure consistency with the magnitude of completeness. 

To isolate induced seismicity, the catalog is declustered by removing aftershocks using spatial and temporal windows optimized for 

geothermal seismicity. 

Continuous fluid injection at Prati-9 totals 7.21 Mm3, while Prati-29 injects 3.29 Mm3, with both wells exhibiting average injection rates 

of 8.79 x 104 m/month. Seasonal fluctuations in injection rates are observed, with peaks during winter months. The seismicity cloud 

surrounding Prati-9 (Figure 2c) shows a clear temporal correlation with injection activities, with seismicity pulsating in response to 

changes in injection rates. The average distance of seismic events from Prati-9 is 376 m, while only sparse activity (approximately 30 

events) occurs near Prati-29 (Figure 2d), at an average distance of 800 m. Due to the limited seismicity near Prati-29, detailed analyses 

focuses on events near Prati-9, though the influence of total injection rates from both wells (Figure 2e) is considered. 
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Figure 2: Study area and seismicity characteristics at the Geysers geothermal field. (a) Map of the locations of injection wells 

Prati-9 and Prati-29, as well as the spatial extent of the seismic events. (b) Spatial distribution of seismic events recorded 

from 2009 to 2015 near Prati-9 and Prati-29. Temporal variations in injection rates at Prati-9. Injection rates at Prati-29. 

Monthly injection rates for Prati-9 and Prati-29, showing seasonal fluctuations and the dominance of Prati-9 in overall 

injection volume. (f) Temporal trends of seismicity within 30-day intervals (blue) and earthquake magnitudes (green) 

compared to injection rates (orange). 

 

3.2 Feature Engineering and Target 

Monthly fluid injection data are preprocessed to calculate injection parameters, including normalized injection rates, cumulative injection 

volumes, and injection pressures. Anomalous spikes in injection volumes, defined as values exceeding ten times the average, are excluded 

to minimize errors. Geological features, including the basement depth and the vertical distance between injection depth and the basement, 

are incorporated to account for subsurface variations influencing induced seismicity. 

The training dataset comprised seismic and injection data from 2009 to 2014, while the validation dataset consisted of data after 2014. 

Historical features, representing the differences between current and previous months, are included to capture potential temporal delays 

in seismic responses to fluid injection. Features with high redundancy or low correlation (smaller than 0.35) with the target variable are 

removed to ensure the robustness of the model. The target variable is the number of earthquakes occurring within 30, 60, 90, and 180 

days, allowing forecasts across multiple temporal horizons. 

3.3 Training and Model Validation 

To validate the model, forecasts are performed using progressively extended training intervals. Earthquakes occurring between 2014 and 

2015 (Figure 2f) were used, with a fixed forecasting window of 120 days. Predictions are evaluated against observed seismicity, with 

accuracy assessed using confidence intervals and statistical metrics. The results (Figure 3a) demonstrate that the our approach accurately 

captures seismicity trends and temporal dynamics, with predictions closely matching observed earthquake counts. The model's 

probabilistic forecasts including uncertainty bounds provide a comprehensive understanding of potential seismic outcomes and enhance 

its applicability for risk assessment. The findings emphasize model's ability to capture the nonlinear relationships between injection 

operations and seismicity, offering insights into the interactions between operational processes and seismic responses. 
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To further demonstrate the robustness of our approach, we analyze scenarios where injection rates are artificially enlarged or reduced after 

prediction times (marked by green lines in Figures 3b and 3c). These scenarios reveal trends that align well with physical expectations 

and provide meaningful interpretations of operational adjustments. The significance of this analysis lies in its potential to simulate and 

evaluate the effects of varying operational conditions, such as sudden changes in injection rates or shut-in operations. By enlarging 

injection rates, the model reflects potential scenarios where increased injection volumes or pressures amplify seismic activity, enabling 

proactive hazard assessments. Conversely, shrinking injection rates or stabilization of reservoir pressures corresponds to scenarios 

involving reduced seismicity rates, which align with mitigation strategies designed to control seismicity. These trends highlight the model's 

capacity to evaluate how operational interventions influence seismic hazards over time, offering critical insights for optimizing injection 

strategies. 

 

Figure 2: Validation and performance analysis of the proposed seismicity forecasting framework. (a) Predicted versus observed 

earthquake counts for 120-day forecasting intervals. The model accurately captures seismicity trends and temporal 

dynamics, with probabilistic forecasts shown as shaded uncertainty bounds (orange). (b) Scenario analysis with artificially 

enlarged fluid injection after a prediction time (green lines). (c) Scenario analysis with reduced injection rates after a 

prediction time. The model reflects amplified seismic activity consistent with expected physical responses to operational 

changes. 

 

4. DISCUSSION 

This study demonstrates the utility of deep neural network for forecasting induced seismicity and managing geothermal reservoir 

operations. Unlike traditional approaches that rely heavily on assumptions or static models, TFT dynamically incorporates heterogeneous 

data and captures the nonlinear relationships between fluid injection and seismic responses. This capability is critical for understanding 

the complex interplay of operational parameters and subsurface processes in active geothermal fields. 
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4.1 Interpretability and Decision Support 

The interpretability of TFT is an advancement in seismicity forecasting, as it provides insights into the relative importance of different 

input features. By identifying dominant factors such as injection rates and geological attributes, TFT enables operators to prioritize key 

parameters for risk mitigation. The ability to simulate hypothetical scenarios, such as sudden increases or decreases in seismicity rates, 

further underscores its value in operational decision-making. These simulations allow stakeholders to evaluate the potential impacts of 

operational changes, including injection rate adjustments or reservoir shut-ins, providing a proactive mechanism for seismic hazard 

management. 

For instance, the model's ability to reproduce trends where seismicity rates are amplified or diminished after specific time intervals 

demonstrates its robustness and alignment with physical expectations. These trends reflect real-world scenarios, such as the effects of 

increased injection rates on pore pressure diffusion and the corresponding seismic activity. Conversely, scenarios with reduced seismicity 

rates illustrate the effectiveness of mitigation strategies aimed at stabilizing reservoir pressures. This functionality positions TFT as a 

valuable tool for scenario testing, enhancing the safety and sustainability of geothermal operations. 

4.2 Addressing Challenges in Seismic Hazard Mitigation 

Induced seismicity remains a major challenge for geothermal energy development, particularly in regions with high societal and 

environmental sensitivities. The probabilistic forecasting capabilities of TFT, including quantile predictions, provide a comprehensive 

view of potential seismic outcomes under varying operational scenarios. By offering uncertainty bounds and probabilistic insights, the 

framework ensures that risk assessments are grounded in a range of plausible outcomes rather than deterministic predictions. This 

capability is essential for designing robust mitigation plans that account for the inherent variability and stochastic nature of induced 

seismicity. 

Moreover, the integration of physics-informed trends, such as transient stress and pore pressure dynamics, into the forecasting process 

bridges the gap between statistical and physics-based approaches. While traditional physics-based models often require detailed subsurface 

data that may be unavailable or uncertain, TFT circumvents these limitations by leveraging historical data and real-time operational inputs. 

This enables reliable forecasting even in data-sparse environments, expanding the applicability of the model to diverse geothermal fields. 

4.3 Limitations and Future Directions 

While the proposed framework demonstrates advancements, several limitations warrant further investigation. First, the performance of 

TFT is dependent on the degree of coupling between well operations and seismicity, particularly in spatially heterogeneous regions where 

geological and operational conditions vary. Incorporating datasets with stronger correlations to induced seismicity, alongside 

comprehensive monitoring networks, could substantially improve the model's ability to generalize across diverse geological settings. 

Second, although the model captures nonlinear relationships among operational parameters and seismicity, the underlying causal 

mechanisms require further exploration. Integrating domain-specific physics into the modeling framework represents a promising 

direction for bridging the gap between empirical observations and physical understanding. Coupling TFT with geomechanical models 

could provide new insights into the physical processes driving induced seismicity. For instance, integrating geological surveys, seismic 

catalogs, and 3-D fault models could explore how fluid injection interacts with pre-existing fractures to induce seismicity. This approach 

would provide insights into the stress redistribution, pore pressure migration, and fault reactivation mechanisms to identify critical 

thresholds and operational parameters for risk mitigation. 

Third, our framework currently focuses on temporal trends in induced seismicity but does not explicitly address spatial distributions of 

seismic events. Extending the model to forecast the spatial propagation of induced seismicity would greatly enhance its utility for 

designing localized mitigation strategies. This could be achieved by coupling the TFT with spatially explicit machine learning approaches 

that account for subsurface heterogeneity. For example, we partition the study area in the Geysers geothermal field into triangulated grids 

based on historical seismicity. In regions with higher seismic density, the grid cells are finer, allowing for more localized representation, 

while injection and geological parameters are aggregated within each grid to construct the feature set. This approach could provide 

spatiotemporal characterization of induced seismicity, offering valuable insights for geothermal field operators to optimize injection 

strategies in high-risk zones. 

Finally, while the framework achieves accurate multi-horizon forecasts, extending the temporal prediction window without compromising 

accuracy remains a challenge. This challenge is relevant for long-term planning in geothermal operations and seismic hazard mitigation. 

Future research could explore adaptive methods, such as dynamic model updating, to continuously recalibrate parameters based on new 

data. Incorporating online learning algorithms and real-time monitoring systems would allow the model to adapt to evolving operational 

contexts and provide actionable forecasts in near real time. By addressing these limitations, future studies could establish a more holistic 

framework for understanding induced seismicity, advancing the sustainability and safety of geothermal energy operations. 

5. CONCLUSIONS 

This study demonstrates the transformative potential of data-driven frameworks constructed from TFT in forecasting induced seismicity 

and managing geothermal reservoir operations. By integrating heterogeneous data, capturing nonlinear relationships, and providing 

interpretable insights, the proposed approach advances the state of the art in seismic hazard mitigation. Beyond forecasting, TFT serves 

as a decision-support tool, enabling operators to simulate and evaluate the impacts of operational adjustments on seismic risks. These 
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capabilities align with the global push for sustainable energy development, ensuring that geothermal energy continues to play a critical 

role in achieving carbon neutrality while prioritizing public safety. 
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